Jurnal Accounting Information System (AIMS)

Volume 6 No. 1 | Maret 2023 : 63-74 DOI: 10.32627

https://jurnal.masoemuniversity.ac.id/index.php/aims

p-ISSN: 2615-7381 e-ISSN: 2621-7279

Cluster Barang Elektronik Mengguanakan Algoritma Fuzzy C-Means dengan Optimize Parameter Grid

Lutfi Hakim¹,Irfan Ali²,Martanto³

¹Tekmik Informatika,STMIK IKMI Cirebon, Indonesia ²Sistem Informatika STMIK IKMI Cirebon, Indonesia ³Manajemen Informatika,STMIK IKMI Cirebon, Indonesia Lutfhakim012@gmail.com

Info Artikel

Sejarah artikel:

Diterima Februari 2023 Direvisi Maret 2023 Disetujui Maret 2023 Diterbitkan Maret 2023

ABSTRACT

Electronic products are goods that are really needed at this time, because electronic goods really help humans in carrying out various daily activities, such as television, computers, cellphones, etc. The problem is how to apply the Fuzzy C-means method with Optimize Parameter Grid in the form of grouping electronic goods data for the needs of consumers used, and how to determine the optimum number of clusters from the use of the method used in grouping electronic goods data sets to find the best accuracy value. The purpose of this study was to apply the use of the fuzzy c-means algorithm in the case of grouping electronic data and produce an output to find out the best value of the electronic data used. While this research uses one method, namely the fuzzy cmeans algorithm with Optimize grid parameters which are included in the grouping rules in data mining. The research results are expected to be able to find the best electronic data set grouping based on the Davies Bouldin Index value resulting from the analysis of the fuzzy cmeans algorithm at measure_type : NumericalMeasure, Dbi = 0.516 and measure_type: MixedMeasure, Dbi = 0.627

Keywords: Electronic goods; Fuzzy C-Means; Cluster; Optimize Grid Parameters.

ABSTRAK

Produk elektronik merupakan barang yang sangat dibutuhkan saat ini, karena barang elektronik sangat membantu manusia dalam melakukan berbagai aktivitas sehari-hari, seperti televisi, komputer, handphone, dan lain-lain. Permasalahannya adalah bagaimana penerapan metode Fuzzy C-means dengan Optimize Parameter Grid dalam bentuk pengelompokkan data barang elektronik bagi kebutuhan konsumen yang digunakan, serta bagaimana menentukan jumlah cluster optimum dari penggunaan metode yang digunakan dalam pengelompokan data set barang elektronik untuk mencari nilai akurasi yang terbaik. Tujuan penelitian ini adalah untuk menerapkan penggunaan metode Algoritma fuzzy c-means dalam kasus pengelompokkan data barang elektronik serta menghasilkan sebuah Output untuk mengetahui nilai terbaik dari data barang elektronik yang digunakan. Penelitian ini menggunakan metode algoritma fuzzy cmeans dengan Optimize parameter grid yang termasuk dalam aturan pengelompokan dalam data mining. Hasil penelitian menunjukkan bahwa dapat pengelompokan dataset elektronik yang terbaik berdasarkan Nilai Davies Bouldin Index yang dihasilkan dari analisa algoritma fuzzy c-means ini sebesar pada measure_type: NumericalMeasure, Dbi = 0,516 dan measure_type: MixedMeasure, Dbi = 0,627.

Kata Kunci: Barang Elektronik; Fuzzy C-Means; Kluster; Optimize Parameter Grid.

PENDAHULUAN

Para produsen dan penjual perlu menerapkan strategi untuk meningkatkan mutu produk dan melakukan inovasi layanan terbaik dalam menghasilkan produk yang kreatif untuk memenangkan persaingan dengan kompetitor. penelitian ini adalah melakukan analisis *text mining* pada produk elektronik yang dijual secara online maupun offline. Dalam rangka menghadapi persaingan dalam pemasaran guna menghasilkan Benefit yang lebih dibidang bisnis tertentu, penambahan stok barang, dan melakukan peningkatan pada penjualan barang yang akan dijual. [1]

Topik ini penting untuk diteliti karena kondisi yang terjadi selama ini membuat konsumen memiliki peluang untuk melihat aspek pembeda antara barang asli dengan barang tiruan lainnya, salah satu aspek pembeda adalah merek (brand). Perbedaan tersebut berupa manfaat yang dikaitkan dengan kinerja produk elektronik dari merek atau yang digambarkan dalam sebuah merek. Fokus masalah penelitian ini adalah, bagaimana untuk menganalisa parameter pengelompokan barang elektronik menggunakan algoritma fuzzy c-means Dengan Optimize Parameter Grid. Pengelompokan dalam data mining. algoritma fuzzy c-means yang bertujuan untuk menemukan Cluster terbesar dan terkecil pada sekumpulan data. Klasterisasi atau clustering adalah proses pengelompokan himpunan data ke dalam beberapa grup atau klaster sedemikian hingga objek-objek dalam suatu klaster memiliki kemiripan yang tinggi,namun sangat berbeda (memiliki ketidakmiripan yang tinggi) dengan objek-objek di klaster-klaster lainnya.[2]

Penelitian terdahulu yang dilakukan oleh Suciati, I. dkk. dalam jurnalnya yang berjudul: Analisis Klaster Menggunakan Metode Fuzzy C-Means pada Data COVID-19 di Provinsi Lampung" menyimpulkan bahwa: bahwa jumlah klaster optimal untuk pengklasteran kabupaten/kota berdasarkan kasus positif, kasus meninggal, dan kasus sembuh COVID-19 di Provinsi Lampung menggunakan metode FCM adalah 2. Hal ini dikarenakan nilai PCI pada jumlah klaster 2 merupakan nilai PCI yang paling besar jika dibandingkan dengan jumlah klaster lainnya.[3]. Usulan penelitian ini yaitu menggunakan klasterisasi yang digunakan pada penelitian ini adalah algoritma fuzzy c-means yaitu sebuah algoritma yang dapat mendefinisikan objek dalam suatu pusat kelompok data yang biasanya menjadi titik-tengah dari kelompok data tersebut. Algoritma ini akan melakukan perulangan untuk mendapatkan titik-tengah yang optimal. Algoritma algoritma fuzzy c-means ini akan membagi klaster sesuai dengan jumlah klaster yang telah ditentukan atau diinisiasi diawal saat menjalankan algoritma ini. Dengan algoritma klastering konstribusinya terhadap sekolah yaitu dapat mengetahui pembagian klaster berdasarkan dataset produk elektronik.

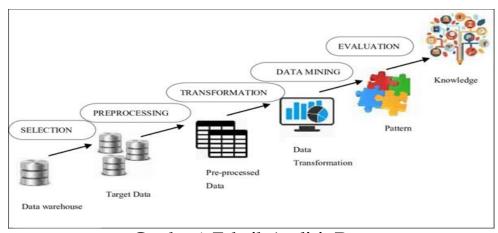
Kajian yang diusulkan yaitu klasterisasi Dataset barang elektronik menggunakan *algoritma fuzzy c-means*, dengan mengikuti alur : Cara kerja dari *fuzzy c-means clustering* dalam mengelompokkan datanya adalah sebagai berikut : 1).Menentukan banyak cluster (k) yang akan dibuat. 2). Menentukan data barang elektronik proporsi untuk setiap data point secara random untuk masuk dalam suatu cluster. 3). Menghitung nilai centroid.[4]

Tujuan dari penelitian ini adalah untuk mengetahui bagaimana cara menganalisa pengelompokan data barang elektronik menggunakan algoritma fuzzy

*c-means serta u*ntuk mengimplementasikan pengelompokan data data barang elektronik menggunakan *algoritma fuzzy c--means clustering* dapat mengetahui *cluster prosentase* dan rata-rata pencapaian data barang elektronik.

METODE

Metode penelitian yang digunakan yaitu menggunakan algoritma *fuzzy c-means* yaitu sebuah algoritma yang dapat mendefinisikan objek dalam suatu pusat kelompok data yang biasanya menjadi titik-tengah dari kelompok data tersebut. *Metode fuzzy c-means* ini akan membagi klaster sesuai dengan jumlah klaster yang telah ditentukan atau diinisiasi diawal saat menjalankan algoritma ini[5]. *Algoritma Fuzzy c_means* mengikuti alur sebagai berikut:


- 1. Tentukan nilai k sebagai jumlah klaster yang ingin dibentuk
- 2. Inisiasi k sebagai centroid yang dapat dibangkitkan secara random
- 3. Hitung jarak setiap data ke masing- masing centroid menggunakan persamaan *Euclidean Distance*
- 4. Kelompokkan setiap data berdasarkan jarak terdekat antara data dengan centroidnya
- 5. Tentukan posisi centroid baru (k)
- 6. Kembali ke langkah 3 jika posisi centroid baru dengan centroid lama tidak sama Penghitungan jarak antara data dengan centroid menggunakan euclidean distance dengan persamaan sebagai berikut:[6]

$$d(P,Q) = \sqrt{\sum_{j=1}^{P} (x_j(P) - x_j(Q))^2} (1)$$

Kemudian untuk menentukan centroid berikutnya pada langkah 5 yaiu dengan persamaan :

$$C(i) = \frac{x_1 + x_2 + x_3 + \dots + x_n}{\sum x} (2)$$

Dengan C adalah centroid baru yang dihasilkan berdasarkan data pada klaster yang terbentuk. Adapun untuk menganalisis dataset elektronik dalam penerapan data mining ini menggunakan proses tahapan *Knowledge Discovery in Databases* (KDD) yang terdiri dari Data, Data *Cleaning*, Data transformation, Data mining, *Pattern evolution*, *Knowledge*, seperti terlihat pada gambar 1:

Gambar 1. Teknik Analisis Data

Tahapannya KDD dari gambar 1 adalah:

- 1. Data; Data set elektronik diperoleh dari data yang bersumber dari *repository Kaggle.go.id*. Data yang digunakan pada penelitian ini ialah sebanyak 937 record electronic.
- 2. Seleksi Data (*Data Selection*); Proses ini memilih dan menyeleksi data elektronik yang diperlukan. Data tersebut dikelompokan menjadi dataset. Pada umumnya, data yang diperoleh, baik dari database maupun survey, memiliki isian-isian yang tidak sempurna seperti data yang hilang, data yang tidak valid atau hanya sekedar salah ketik..
- 3. Data *transformation*; adalah proses transformasi pada data yang telah dipilih, sehingga data tersebut sesuai untuk proses data mining.
- 4. Data mining; yaitu proses mengeksplorasi dan menganalisa data dalam jumlah yang besar yang bertujuan untuk menemukan suatu pola atau informasi yang menarik dari data yang tersimpan dalam jumlah yang besar dengan menggunakan teknik atau metode tertentu. Teknik, metode, atau algoritma yang tepat sangat bergantung pada tujuan dan proses *Knowledge Discovery in Databases* (KDD) secara keseluruhan.
- 5. Evaluation; merupakan hasil dari teknik data mining berupa pola pola yang khas maupun model dievaluasi untuk menilai apakah memang tercapai. Bila ternyata hasil yang diperoleh tidak sesuai maka ada beberapa alternatif yang dapat diambil seperti menjadikannnya umpan balik untuk memperbaiki data mining lain yang lebih sesuai, atau menerima hasilnya sebagai suatu hasil yang diluar dugaan yang mungkin bermanfaat.[7]

HASIL PENELITIAN DAN PEMBAHASAN

Hasil penelitian yang dilakukan dalam pembahasan ini yaitu akan menguraikan proses bagaimana mengelompokan atau clusterisasi dataset elektronik dengan menggunakan *Algoritma Fuzzy C-Means*. Pengelompokkan ini dilakukan dengan proses pengujian menggunakan machine learning yaitu *Software RapidMiner Studio*.[8]

Data

Dataset yang digunakan dalam penelitian ini adalah dataset electronic sebanyak 936 record dan terdiri 11 atribut pada tahun 2019 sampai dengan 2020. Dataset tersebut bersumber dari *Repository Kaggle.go.id.* Hasil penelusuran Data tersebut dalam bentuk dokumen *soft* file format file csv syang di sajikan pada tampilan dataset elektronik pada tabel 1.

Tabel 1. Dataset electronik

No	u_id	name	offer_ price	original_ price	total_ ratings	Total reviews	RAM
1	22D33RGW	HPOMEN Ryzen7	99990	124283	0	0	16GBDD
		OctaCoreA					R5RAM
2	1X0V8DP0	InfinixX1	46990	69999	128	17	16G BLP
		SeriesCorei7 10thGen					DDR4XRAM
3	EBK8ZBOF	ASUS Vivo Book15	33990	45990	3600	370	8G BDD
							R4RAM

No	u_id	name	offer_ price	original_ price	total_ ratings	Total reviews	RAM
4	2UWFCQ6Z	ASUSVivo Book	43990	57990	2408	211	8GB DDR 4RAM
5	RHHI5DCG	ASUSTUF Gaming F15Corei/	47990	70990	1209	100	8GB DDR4RAM
6	T2LBXWSX	HPPavilion Ryzen5 Hexa CoreA	55990	63539	8146	851	8GB DDR4RAM
7	RWIIUF8L	HPCorei5 12thGen	58499	72331	301	27	16GB DDR4RAM
8	N0F1Q7EX	InfinixX1SeriesCorei7	46990	69999	128	17	16GBL PD DR4XRAM
9	D8P5OYHY	ASUSTUF GamingA17 with90Whr	51990	71990	350	47	8GB DDR4RAM
10	VR1DIKXD	HPCorei 311t h Gen- (8GB/	40999	49508	1728	148	8GB DDR4RAM
				• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
937	JL6N2361	InfinixX1 SlimSeries	46990	69999	80	20	16GBL P DDR4XRAM

b. Data Selection

Untuk membaca dataset dalam bentuk *file* excel, menggunakan operator read excel pada rafidminer yang ditampilkan seperti pada gambar 2.

Gambar 2. Operator Read Excel pada Rapidminer

Parameter pada operator *Read Excel*, menggunakan operator *default*. Dari hasil pembacaan operator *Read Excel* didapat informasi sebagai berikut.

Tabel 2. Statistik Dataset

	Tabel 2. Statistik i	
No.	Uraian	Keterangan
1.	Record	937
2.	Special Attribute	0
3.	Reguler Atribute	11
	Attribute :	
1.	u_id	polynominal
2	Name	polynominal
3	offer_price	integer
4.	original_price	integer
5.	off_now	polynominal
6.	total_ratings	integer
7.	total_reviews	integer
8.	Rating	real
9.	item_link	polynominal
10.	created_at	date

11.	processor	polynominal
12.	Ram	polynominal
13.	systemoperasi	polynominal
14.	Storage	polynominal
15.	Monitor	polynominal
16.	Office	polynominal
17.	Garansi	polynominal

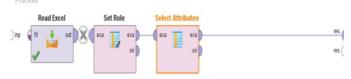
Untuk seleksi pertama yaitu menentukan ID pada dataset, digunakan operator *Set Role* seperti tampak pada gambar 3 dibawah ini.

Gambar 3. Operator Set Role pada Rapidminer

Parameter pada operator *Set Role* yang digunakan tampak pada tabel 2 dibawah ini.

Tabel 3. Parameter dan atribut yang dipilih pada operator Select Attribut

No.	Parameter	Isi		
1.	Attribute name	u_id		
2.	Target role	id		


Untuk seleksi selanjutnya pada dataset, digunakan operator *Select Attribut* seperti tampak pada gambar 4 dibawah ini.

Gambar 4. Operator Select Attiribut pada Rapidminer

Atribut yang tidak dipilih yaitu:

- 1. name, karena atribut ini relevan dengan u_id
- 2. item_link, karena atribut ini relevan dengan u_id Model proses pada rapidminer dilangkah *Selection* tampak pada gambar 5 dibawah ini.

Gambar 5: Model proses langkah Selection di Rapidminer

Preprocessing

Proses *cleansing* atau pembersihan data yang *missing* atau memiliki nilai yang tidak konsisten pada langkah *preprocessing*. Sebelum melakukan proses ini,

dilakukan analisa terlebih dahulu apakah atribut pada dataset yang dipilih memiliki nilai *missing* atau tidak serta memiliki data yang konsisten atau tidak. Dari hasil *result* dari statistik dataset seperti tampak pada gambar 4.5 dibawah ini, diketahui bahwa ada 3 atribut yang memiliki nilai *missing* yaitu atribut stotage (10), Office (519) dan Garansi (1). Untuk memeriksa konsisten atau tidak konsistennya dataset yang digunakan diperiksa per-*record* secara langsung dan menunjukan bahwa dataset memiliki data yang konsisten terhadap nilainya. Ternyata atribut Office memiliki nilai NA (no answer) atau dengan kata lain tidak memiliki nilai atau missing. Pada langkah *Preprocessing*, perlu dilakukan menyamakan atau mengkonsistenkan no answer atau NA menjadi nilai blank. Diperlukan sebuah operator yang bernama *Declare Missing Value* seperti tampak pada gambar 6.

Gambar 1. Operator Declare Missing Value pada Rapidminer

Parameter pada operator *Declare Missing Value* yang digunakan tampak pada tabel 3 dibawah ini.

Tabel 3. Parameter pada Operator Declare Missing Value

No.	Parameter	Isi
1.	Attribute filter	All
	type	
2.	Nominal	Nominal
3.	Nominal value	NA

Hasil dari penggunaan operator *Declare Missing Value* akan menghilangkan nominal NA menjadi blank atau missing seperti tampak pada gambar dibawah ini.

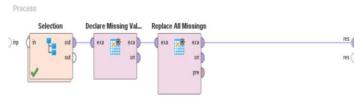
4.300	IntelCorei5Pr	8GBDDR4RAM	64bitWindow	1TBHDD 256	39.62cm(15	OfficeHomea	1YearOnsite
3.700	IntelCorei7Pr	16GBLPDDR	64bitWindow	512GBSSD	35.56cm(14l	NA	1YearOnsite

Gambar 7. Sebelum menggunakan Operator Declare Missing Value

4.300	IntelCorei5Pr	8GBDDR4RAM	64bitWindow	1TBHDD 256	39.62cm(15	OfficeHomea	1YearOnsite
3.700	IntelCorei7Pr	16GBLPDDR	64bitWindow	512GBSSD	35.56cm(14l	?	1YearOnsite

Gambar 8. Setelah menggunakan Operator Declare Missing Value

Selanjutnya menjadikan nilai blank atau missing tersebut dengan sebuah nilai, misalnya sebuah nilai dalam bentuk nominal. Dapat dilakukan dengan menggunakan operator Replace All Missings seperti tampak pada gambar dibawah ini


Gambar 9. Operator Replace All Missings pada Rapidminer

Parameter pada operator *Replace All Missings* digunakan default. Hasil dari penggunaan operator *Replace All Missings* tampak pada gambar 10 dibawah ini.

4.300	IntelCorei5Pr	8GBDDR4RAM	64bitWindow	1TBHDD 256	39.62cm(15	OfficeHomea	1YearOnsite
3.700	IntelCorei7Pr	16GBLPDDR	64bitWindow	512GBSSD	35.56cm(14l	MISSING	1YearOnsite

Gambar 10. Setelah menggunakan Operator Replace All Missings

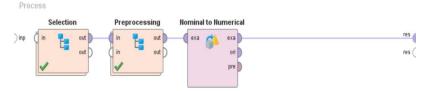
Model proses pada *rapidminer* dilangkah *Preprocessing* tampak pada gambar 11 dibawah ini.

Gambar 11. Model Proses Langkah Preprocessing di Rapidminer

Transformation

Pada langkah transformation, untuk mengubah data bertipe *polynominal* atau *nominal* menjadi *numeric* menggunakan operator *Nominal to Numerical* seperti pada gambar 12 dibawah ini.

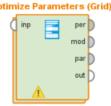
Gambar 12. Operator Nominal to Numerical pada Rapidminer


Parameter pada operator *Nominal to Numerical* yang digunakan tampak pada tabel 4 dibawah ini.

Tabel 4. Parameter dan atribut yang dipilih pada operator Nominal to Numerical

	pada operator Nominar to Numericar					
No.	Parameter	Isi				
1.	Parameter	Subset				
	Attribute filter					
	type					
2.	Parametr Coding	Garansi				
3.	type	Monitor				
4.	_	Off_now				
5.	_	Office				
6.	_	Processor				

7.	RAM
8.	SistemOperasi
9.	Storage


Model proses pada rapidminer sampai dengan langkah *Tranformation* (*Polynominal to Numerical*) tampak pada gambar 13 dibawah ini.

Gambar 2. Model proses sampai dengan langkah Tranformation (Polynominal to Numerical)

Data Mining

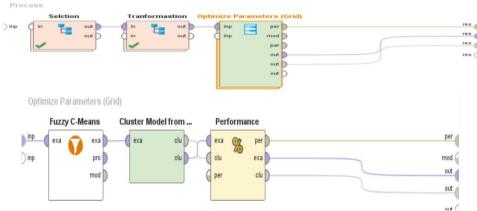
Pada langkah data mining karena menggunakan *Optimize Parameter (Grid)*, maka operator *Optimize Parameter (Grid)* digunakan lebih awal sebelum menggunakan operator *Fuzzy C-Means*.

Gambar 3. Operator Optimize Parameter (Grid) pada Rapidminer

Karena operator *Optimize Parameter (Grid)* merupakan jenis operator sub proses, maka didalam operator ini dipasang operator *Fuzzy C-Means* seperti tampak pada gambar 15 dibawah ini.

Gambar 4. Operator K-Means pada Rapidminer

Setelah menggunakan operator *Fuzzy C-Means*, gunakan operator *Cluster Model from Data* untuk membuat Model Cluster dari atribut cluster yang ada. Operator *Cluster Model from Data* tampak pada gambar 16.


Gambar 5. Operator Cluster Model from Data pada Rapidminer

Selanjutnya menggunakan pula operator *Cluster Distance Performance*. Operator ini digunakan untuk mendapatkan nilai performance dari paramater yang digunakan pada operator *Fuzzy C-Means* dan model yang dihasilkan. Operator *Cluster Distance Performance*, tampak pada gambar 17 dibawah ini.

Gambar 6. Cluster Distance Performance

Model proses pada rapidminer sampai dengan langkah Data Mining tampak pada gambar 18 dibawah ini.

Gambar 7. Model Proses sampai dengan Langkah Data Mining

Parameter pada operator *Optimize Parameter (Grid)* yang digunakan tampak pada tabel 5 dibawah ini.

No.	Parameter	Operator	Select	Value
			Paramenters	
1.	Edit	Fuzzy C-	Clusters	Min: 2
	Parameter	Means		Max: 10
	Setting			Steps: 10
	_			Scale : Linear
			measure_type	NumericalMeasur
				e
				MixedMeasure
		Performanc	main_criterion	Davies Bouldin
		e (Cluster		
		Distance		
		Formance)		

Evaluation

Evaluasi yang dilakukan terhadap hasil kegiatan eksperimen terhadap dataset yang diperoleh hasil sebagai berikut.

iteration	Clusters	Measure_type	Main_criterion	Davies Bouldin
1	2	NumericalMeasure	Davies Bouldin	0.521
		S		
2	3	NumericalMeasure	Davies Bouldin	0.516
		S		

3	4	NumericalMeasure	Davies Bouldin	0.549
		S		
4	2	MixedMeasures	Davies Bouldin	0.678
5	3	MixedMeasures	Davies Bouldin	1.008
6	4	MixedMeasures	Davies Bouldin	4.170
7	7	MixedMeasures	Davies Bouldin	0.627
8	8	MixedMeasures	Davies Bouldin	0.672
9	9	MixedMeasures	Davies Bouldin	0.676
10	10	MixedMeasures	Davies Bouldin	0.770

Dari hasil tersebut diperoleh kesimpulan bahwa:

- a. Banyaknya cluster terbaik berdasarkan algoritma Fuzzy C-Means yang sebanyak 3 cluster dengan dengan Dbi = 0,516
- b. Pada measure_type : NumericalMeasure, Dbi = 0,516 dan measure_type : MixedMeasure, Dbi = 0,627. Jadi measure_type terbaik ada pada NumericalMeasure
- c. Banyaknya anggota masing-masing cluster pada cluster terbaik yaitu:
- a. Cluster 0 = 648 item
- b. Cluster 1 = 222 item
- c. Cluster 2 = 66 item

PENUTUP

Berdasarkan hasil penelitian pengelompokkan Dataset Elektronik menggunakan *Algoritma Fuzzy C-Means*, maka hasilnya dapat disimpulkan sebagai berikut :

- 1. Dapat mengetahui informasi pengelompokan dataset Electronic terbaik berdasarkan Nilai *Davies Bouldin Index* yang dihasilkan dari *algoritma Fuzzy C-means* ini sebesar Pada measure_type: NumericalMeasure, Dbi = 0,516 dan measure_type: MixedMeasure, Dbi = 0,627.
- 2. Dapat menganalisa dan pengelompokan dataset Electronic menggunakan *algoritma Fuzzy C-means*. Dapat pengelompokan menggunakan k-means diperoleh nilai terbaik sebanyak 3 cluster, yaitu cluster 0 sebanyak 648 item dan cluster 1 sebanyak 222 item. Dan cluster 2 sebanyak 66 item.
- 3. Dapat mengetahui banyaknya anggota masing-masing cluster pada cluster terbaik yaitu : Cluster 0 = 648 item, Cluster 1 = 222 item, Cluster 2 = 66 item.

DAFTAR PUSTAKA

- [1] 2Luth Fimawahib 1Erni Rouza, "Implementasi Fuzzy C-Means Clustering dalam Pengelompokan UKM Di Kabupaten Rokan Hulu," *Techno.COM*, vol. 19, no. 4, pp. 481–495, 2020.
- [2] D. D. Indah Nuryani, "Analisis clustering pada pengguna brand hp menggunakan metode k-means," *Pros. Semin. Nas. Ilmu Komput. Vol.*, vol. 1, no. 1, pp. 190–211, 2021.

- [3] W. Suciati, I.Herawati, N. Subian, S.1, "Analisis Klaster Menggunakan Metode Fuzzy C-Means pada Data COVID-19 di Provinsi Lampung," *FMIPA Unila*, pp. 66–73, 2021.
- [4] J. Tamaela, E. Sediyono, and A. Setiawan, "Cluster Analysis Menggunakan Algoritma Fuzzy C-means dan K-means Untuk Klasterisasi dan Pemetaan Lahan Pertanian di Minahasa Tenggara," *J. Buana Inform.*, vol. Volume 8, , pp. 151–160, 2017.
- [5] G. Nabila, S. Putri, D. Ispriyanti, T. Widiharih, D. Statistika, and U. Diponegoro, "Implementasi Algoritma Fuzzy C-Means dan Fuzzy Possibilistics C-Means untuk Klasterisasi Data Tweets pada Akun Twitter Tokopedia," *J. GAUSSIAN*, vol. 11, pp. 86–98, 2022.
- [6] M. Priyono, T. Sulistyanto, K. Suharsono, and D. A. Nugraha, "Monitoring dan Kendali Peralatan Elektronik Menggunakan Logika Fuzzy Melalui Website Dengan Protokol HTTP," *J. SMARTICS*, vol. 2, no. 2, pp. 49–54, 2018.
- [7] F. Agustini, "Implementasi Algoritma Fuzzy C-Means Studi Kasus Penjualan di Sushigroove Restaurant," *J. ILMU Pengetah. DAN Teknol. Komput.*, vol. VOL. 3. NO, pp. 127–132, 2017.
- [8] B. Christian and L. Hakim, "Penerapan Algoritma Fuzzy C-Means Pada Penentuan Lokasi Gudang Pendukung PT . XYZ," *AITI J. Teknol. Inf.*, vol. 16, no. 1, pp. 31–48, 2019.