Penerapan Geo-Spatial Business Intelligence dalam Analisis dan Visualisasi Survey Kondisi Jalan
DOI:
https://doi.org/10.32627/internal.v7i2.1028Keywords:
Businnes Intelligence, Geospatial , IKP, Street MapAbstract
The road pavement condition survey aims to determine the Pavement Condition Index (PCI) value, which serves as the main indicator in determining road treatment strategies, such as routine maintenance, periodic maintenance, structural improvements, or reconstruction. In the manual execution of the road condition survey, the process involves walking along the road sections to be surveyed, taking samples from specific sections, which can take a relatively long time. In this study, an innovation was introduced to use video for recording road sections and performing analysis using an application. Data collection for the survey is carried out using video cameras with GPS technology mounted on vehicles to record road conditions in real-time. The telemetry data generated includes information on latitude, longitude, and vehicle speed, which is then further analyzed to create a dataset containing damage types, severity levels, damage dimensions, and other parameters. With the vast extent of provincial road sections reaching thousands of kilometers, Geospatial Business Intelligence (BI)-based street map technology is used to visualize and analyze survey results more effectively and quickly. The results of the study show that video and telemetry technology provide detailed information, while integration with Geospatial BI enhances the efficiency and speed of strategic decision-making related to road treatment.
References
K. Mutijarsa, F. A. Alunjati, F. Hidayat, R. Kurnia dan Z. Arsyad, “Smart Road Damage Survey System Using Machine Vision and IoT Technology,” dalam 2023 3rd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), Bali, 2023.
P. Ministry, “Guidelines for Determining Pavement Condition Index (IKP),” 11 Actober 2016. [Online]. Available: https://simantu.pu.go.id/content/?id=1102. [Diakses 24 March 2023].
N. Nurfahma dan B. W. Widianto, “Penilaian Kondisi Jalan Dan Rekomendasi Penanganan Menggunakan Pedoman Penentuan Indeks Kondisi Perkerasan (IKP) Dan Road Condition Index (RCI),” dalam FTSP Series : Seminar Nasional dan Diseminasi Tugas Akhir, Bandung, 2022.
P. Paikun, E. Suminar, A. Irawan dan S. Bahri, “Determining Road Handling According to The Level of Damage Using Surface Distress Index (SDI) Method (Case study on Jl. Merdeka 1 Sukabumi City),” ASTONJADRO: Jurnal Rekayasa Sipil, vol. 10, no. 1, p. 146, 2021.
Adanikin, A. J. A, O. Akande dan Aremu-Cole, “Spatial Analysis of Road Pavement Condition and Maintenance Actions using GIS,” n Journal of Engineering Science Research (NIJESR), vol. 5, no. 1, pp. 76-86, 2024.
D. S. S. D. S. S. Ms. Palak Vaish, “Business Intelligence: Escalation of Data Warehousing and Data Mining for effective Decision Making,” International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 1377-1388, 2020.
D. Trisnawarman, “Geospatial Business Intelligence (GeoBI) Application for Sales Performance Analysis,” dalam Proc Internaitonal Conference on Information Technology, Engineering, Science, and its Applications, Jakarta, 2018.
O. B. A. T. T. A. C. A. U. M. Mohamed Hanine, “Enhancing Geospatial Business Intelligence capabilities using Multi-Criteria,” Electronic Devices, vol. 4, no. 2, p. 42, 2015.
A. A. Yulianto, “Extract transform load (ETL) process in distributed data academic data warehouse,” APTIKOM Journal on Computer Science and information technologies , vol. 4, no. 2, pp. 61-88, 2019.
Z. Arsyad, “Analisis Dynamic ETL Incremental Load untuk Data Integration Datawarehouse,” Information System Journal (INTERNAL), vol. 4, no. 2, p. 103, 2021.
,. R. S. R. P. M. A. I. Wulan Stau Fana, “Data Warehouse Design with ETL Method (Extract, Transform, And Load) for Company Information Centre,” International Journal of Artificial Intelligence Research, vol. 5, no. 2, pp. 132-137, 2021.
C.-Y. Chiang, R. Zhong, J. Ding, J. Wood, S. Bee dan M. Jaber, “AllTheDocks road safety dataset: A cyclist’s perspective and experience,” arXiv preprint arXiv:2404.10528, 2024.
N. lund´en, E. T. Bekar, A. Skoogh dan J. Bokrantz, “Domain Knowledge in CRISP-DM: An Application Case in Manufacturing,” dalam International Federation of Automatic Control (IFAC), Yokohama Japan, 2023.
C. E. D. Vanegas, J. C. G. Mejía, F. A. V. Agudelo dan D. E. S. Duran, “A Representation Based on Essence for the CRISP-DM Methodology,” Computación y Sistemas, vol. 27, no. 3, pp. 675-689, 2023.
W. Wijaya, J. Wiratama dan S. F. Wijaya, “Implementation of Data Warehouse and Star Schema for Optimizing Property Business Decision Making,” G-Tech : Jurnal Teknologi Terapan, vol. 8, no. 2, pp. 1242-1250, 2024.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zulkifli Arsyad, Sofia Umaroh

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.