Deteksi Pneumonia pada Citra Akhir X – Ray Dada Menggunakan Convolutional Neural Networks Berdasarkan Fitur Prewitt Operator
DOI:
https://doi.org/10.32627/internal.v8i1.1380Keywords:
Convolutional Neural Network, Medical Image Analysis, Pneumonia, Prewitt Operator, X-Ray DiagnosisAbstract
Pneumonia is a lung infection that is a leading cause of death, especially in children and adults in developing countries. The diagnosis of pneumonia is usually made through physical examination and interpretation of chest X-rays, but the results can vary depending on the experience of the doctor, potentially leading to misdiagnosis. This study uses a convolutional neural network (CNN) to detect pneumonia in X-ray images, with additional feature processing methods, such as the Prewitt operator to handle class imbalance. The goal is to improve the accuracy of pneumonia detection so that it can assist medical personnel in decision making and reduce misdiagnosis. As a result, the developed model achieved an accuracy of 96.59% on training data with consistent improvement, demonstrating the potential of CNN in supporting pneumonia diagnosis more accurately and reliably.
References
World Health Organization. (2020). Pneumonia.
Kementerian Kesehatan Republik Indonesia. (2020). Profil Kesehatan Indonesia Tahun 2018.
American Thoracic Society. (2020). Diagnosis and Treatment of Adult Pneumonia.
World Health Organization. (2014). Pneumonia : Key Facts
McHugh, T. D., & Lakshminarayan, S. (2014). Pneumonia Diagnosis in Children: Challenges and Solutions.
van der Heijden, J. F., & Hoes, A. W. (2005). Accuracy of chest radiography in the diagnosis of pneumonia: a systematic review and metaanalysis.
Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. W., Ciompi, F., Ghafoorian, M., ... & van Ginneken, B. (2017). A survey on deep learning in medical image analysis.
Kermany, D. S., Zhang, K., Li, Q., King, D., & Sun, H. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning.
Wang, X., Peng, Y., Lu, L., Lu, Z., & Bagheri, M. (2017). A Deep Learning
Tian, X. "A novel image edge detection algorithm based on prewitt operator and wavelet transform." International Journal of Advancements in Computing Technology 4.19 (2012): 73-82.
Yang, Lei, et al. "An improved Prewitt algorithm for edge detection based on noised image." 2011 4th International congress on image and signal processing. Vol. 3. IEEE, 2011.
Balochian, Saeed, and Hossein Baloochian. "Edge detection on noisy images using Prewitt operator and fractional order differentiation."Multimedia Tools and Applications 81.7 (2022): 9759-9770.
Yopento, Jopa et al. “Identifikasi Pneumonia Pada Citra X-Ray Paru-Paru Menggunakan Metode Convolutional Neural Network (CNN) Berdasarkan Ekstraksi Fitur Sobel.” Rekursif: Jurnal Informatika (2022): n. pag.
Garstka, Jakub, and Micha? Strzelecki. "Pneumonia detection in X-ray chest images based on convolutional neural networks and data augmentation methods." 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA). IEEE, 2020.
Shazia, Anis, et al. "A comparative study of multiple neural network for detection of COVID-19 on chest X-ray." EURASIP journal on advances in signal processing 2021 (2021): 1-16.
Navisa, S., Luqman Hakim, and Aulia Nabilah. “Komparasi Algoritma Klasifikasi Genre Musik Pada Spotify Menggunakan CRISP-DM: Indonesia”. Jurnal Sistem Cerdas, Vol. 4, no. 2, Aug. 2021, pp. 114 -25, doi:10.37396/jsc.v4i2.162.
Josefa, Razky, Rini Sovia, and Eka Praja Wiyata Mandala. "Sistem Pakar Diagnosa Penyakit Pneumonia Pada Anak Menggunakan Metode Case Based Reasoning." Seminar Nasional Teknologi Komputer & Sains (SAINTEKS). Vol. 1. No. 1. 2019.
Putra, Ardiansyah, Volvo Sihombing, & Mustafha Haris Munandar. " Rancang Bangun Aplikasi Deteksi Tepi Citra Digital Menggunakan Algoritma Prewitt,” Jurnal Tekinkom (Teknik Informasi dan Komputer) [Online], 4.1 (2021): 83-87. Web. 27 Sep. 2024.
Masril, M. A., and R. Noviardi. “Analisa Morfologi Dilasi Untuk Perbaikan Kualitas Citra Deteksi Tepi Pada Pola Batik Menggunakan Operator Prewitt Dan Laplacian of Gaussian”. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), Vol. 4, no. 6, Dec. 2020, pp. 1052 -, doi:10.29207/resti.v4i6.2601.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Raihan, Cecep Nurul Alam, Wildan Budiawan Zulfikar

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.