The Performance Comparison of Classification Algorithm in Order to Detecting Heart Disease

Authors

  • Chepy Bagustian Sonjaya Universitas Buana Perjuangan Karawang
  • Anis Fitri Nur Masruriyah Universitas Buana Perjuangan Karawang
  • Dwi Sulistya Kusumaningrum Universitas Buana Perjuangan Karawang
  • Adi Rizky Pratama Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.32627/internal.v5i2.595

Keywords:

Cross Validation, Klasifikasi, Logistic Regression, Penyakit jantung, Support Vector Machine

Abstract

Heart disease in Indonesia, especially in the productive age, there is always an increase in the number of cases. The main cause of the increase in the number of heart patients is an unhealthy lifestyle and diet. The increase in patients with heart disease also has an impact on decreasing the standard of living. With this in mind, there is a need for research related to comparing classification methods on heart disease datasets. The dataset obtained is not balanced so that an oversampling technique is needed. The oversampling technique used is SMOTE. This research method uses Support Vector Machine (SVM) and Logistic Regression (LR). In order for this research method to be applied successfully, the data acquisition, data pre-processing and data transformation techniques are used to ensure accurate results. The model evaluation technique used is K-Fold Cross Validation. Based on the results of the analysis, it showed that the data partition using k-fold cross validation without oversampling gets the same accuracy value but the precision value is quite low. Conversely, if using the SMOTE technique, the accuracy value is as good as the precision value. The results of the SVM accuracy value get a value of 91.69%. LR is 91.76%. While the results of the SVM precision value of 57.81% and LR 54.82%. If using the SVM oversampling technique, the score is 75.79% and the LR is 75.84%. Meanwhile, the precision value obtained in SVM is 75.74%. At LR by 74.77%.

References

“Kementerian Kesehatan Republik Indonesia,” 2021. https://www.kemkes.go.id/article/view/21093000002/penyakit-jantung-koroner-didominasi-masyarakat-kota.html (accessed Aug. 04, 2022).

R. Annisa, “Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung,” J. Tek. Inform. Kaputama, vol. 3, no. 1, pp. 22–28, 2019, [Online]. Available: https://jurnal.kaputama.ac.id/index.php/JTIK/article/view/141/156

“Cardiovascular diseases (CVDs).” https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed Oct. 02, 2022).

C. W. Tsao et al., “Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association,” Circulation, vol. 145, no. 8, pp. E153–E639, Feb. 2022, doi: 10.1161/CIR.0000000000001052.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

S. Mezzatesta, C. Torino, P. De Meo, G. Fiumara, and A. Vilasi, “A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis,” Comput. Methods Programs Biomed., vol. 177, pp. 9–15, Aug. 2019, doi: 10.1016/j.cmpb.2019.05.005.

P. Ghosh et al., “Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques,” IEEE Access, vol. 9, pp. 19304–19326, 2021, doi: 10.1109/ACCESS.2021.3053759.

I. M. El-Hasnony, O. M. Elzeki, A. Alshehri, and H. Salem, “Multi-Label Active Learning-Based Machine Learning Model for Heart Disease Prediction,” Sensors, vol. 22, no. 3, 2022, doi: 10.3390/s22031184.

W. Hidayat, M. Ardiansyah, and A. Setyanto, “Pengaruh Algoritma ADASYN dan SMOTE terhadap Performa Support Vector Machine pada Ketidakseimbangan Dataset Airbnb,” Edumatic J. Pendidik. Inform., vol. 5, no. 1, pp. 11–20, 2021, doi: 10.29408/edumatic.v5i1.3125.

R. A. Nurdian, Mujib Ridwan, and Ahmad Yusuf, “Komparasi Metode SMOTE dan ADASYN dalam Meningkatkan Performa Klasifikasi Herregistrasi Mahasiswa Baru,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, 2022, doi: 10.28932/jutisi.v8i1.4004.

Trivusi, “Penjelasan Lengkap Algoritma Support Vector Machine (SVM) - Trivusi,” 2022. https://www.trivusi.web.id/2022/04/algoritma-svm.html (accessed Aug. 06, 2022).

M. Aminullah, Perbandingan Performa Klasifikasi Machine Learning dengan Teknik Resampling pada Dataset Tidak Seimbang. 2021. [Online]. Available: https://repository.uinjkt.ac.id/dspace/bitstream/123456789/57648/1/MUHAMMAD AMINULLAH-FST.pdf

F. Handayani, “Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network Dalam Prediksi Penyakit Jantung,” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 329, 2021, doi: 10.26418/jp.v7i3.48053.

W. Willy, D. P. Rini, and S. Samsuryadi, “Perbandingan Algoritma Random Forest Classifier, Support Vector Machine dan Logistic Regression Clasifier Pada Masalah High Dimension (Studi Kasus: Klasifikasi Fake News),” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1720, 2021, doi: 10.30865/mib.v5i4.3177.

P. R. Sihombing, “Perbandingan Metode Artificial Neural Network (ANN) dan Support Vector Machine (SVM) untuk Klasifikasi Kinerja Perusahaan Daerah Air Minum (PDAM) di Indonesia,” J. Ilmu Komput., vol. 13, no. 1, p. 9, 2020, doi: 10.24843/jik.2020.v13.i01.p02.

U. Amelia et al., “Implementasi Algoritma Support Vector Machine ( Svm ) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” vol. III, pp. 254–259, 2022.

F. Ansari, “Cross Validation Techniques. This write-up contains explanation of… | by Faizan Ansari | Analytics Vidhya | Medium,” Medium.com, 2021. https://medium.com/analytics-vidhya/cross-validation-techniques-bacb582097bc (accessed Aug. 31, 2022).

Downloads

Published

2022-12-31

How to Cite

Sonjaya, C., Nur Masruriyah, A. F., Sulistya Kusumaningrum, D., & Rizky Pratama, A. (2022). The Performance Comparison of Classification Algorithm in Order to Detecting Heart Disease. INTERNAL (Information System Journal), 5(2), 166–175. https://doi.org/10.32627/internal.v5i2.595

Issue

Section

Articles