Penerapan Data Mining Algoritma Apriori untuk Menemukan Pola Hubungan Status Gizi Balita

Authors

  • Evi Nurmalasari Universitas Ma’soem
  • Utami Aryanti Universitas Ma’soem
  • Tonton Taufik Rachman Universitas Ma’soem

Keywords:

Apriori, Data Mining, Informasi, Masalah Gizi, Sistem

Abstract

Malnutrition of toddlers can cause severely health problems, growth retardation, and decreased intelligence. Therefore, it is important to know the pattern of the relationship between the nutritional status of toddlers, especially against the condition of malnutrition to get information about the possible risk of nutritional coexistence problems. The purpose of this research is to apply data mining using the apriori algorithm in finding patterns of relationships between
nutritional status and to produce an accuracy level of association rules based on the value of support, confidence, and validation with the lift ratio. The results of this study are expected to generate information that can help prevent and treat malnutrition, as well as appropriate nutrition interventions. Analysis and implementation of data using the a priori algorithm method. Manual calculations are carried out using Microsoft Excell and accurate calculations with python programming. Data on the nutritional status of children under five, especially undernourished conditions will be processed to find patterns of association relationships. Determined the minimum support value of 0.1 or 10% and the minimum confidence of 0.5 or 50%. The research produces association rules in the form of association relationship patterns of nutritional status specifically malnutrition conditions (Underweight?Stunting ) with a support of 0.25 or 25% and confidence 0.57 or 57%. The rules have met the minimum support and minimum confidence values and have been validated by the lift ratio with a value > 1.

References

M. R. K. Chowdhury, M. S. Rahman, B. Billah, R. Kabir, N. K. P. Perera, and M. Kader, “The prevalence and socio-demographic risk factors of coexistence of stunting, wasting, and underweight among children under five years in Bangladesh: a cross-sectional study,” BMC Nutr., vol. 8, no. 1, pp. 1–12, 2022, doi: 10.1186/s40795-022-00584-x.

A. Khaliq, D. Wraith, Y. Miller, and S. Nambiar, “Association of Infant Feeding Indicators and Infant Feeding Practices with Coexisting Forms of Malnutrition in Children under Six Months of Age,” Nutrients, vol. 14, no. 20, 2022, doi: 10.3390/nu14204242.

M. N. M. Arhami, Data Mining Algoritma dan Implementasi, 1st ed. Yogyakarta: CV Andi Offset, 2020. [Online]. Available: https://www.google.co.id/books/edition/Data_Mining_Algoritma_dan_Implementasi/AtcCEAAAQBAJ?hl=id&gbpv=1&dq=data+mining+algoritma+dan+implementasi&printsec=frontcover

A. Harist N, I. R. Munthe, and A. P. Juledi, “Implementasi Data Mining Algoritma Apriori untuk Meningkatkan Penjualan,” J. Tek. Inform. UNIKA St. Thomas, vol. 7, no. 2, pp. 188–197, 2021, doi: 10.54367/jtiust.v6i1.1276.

T. D. Yustika, Faktor-Faktor yang Menyebabkan Terjadinya Perceraian Menggunakan Algoritma Apriori. 2020. [Online]. Available: http://repository.uin-suska.ac.id/30167/%0Ahttp://repository.uin-suska.ac.id/30167/1/sripsi full.pdf

T. Maslihatin and M. Sulehu, “Celebes Computer Science Journal Sistem Asosiasi Penyusunan Obat Pada Apotek Balai Rehabilitasi Badan Narkotika Nasional Baddoka Menggunakan Algoritma Apriori Artikel info Artikel history,” vol. 2, no. 2, pp. 27–38, 2020, [Online]. Available: http://journal.lldikti9.id/ccsjDOI:https://doi.org/

M. A. M. Afdal and M. Rosadi, “Penerapan Association Rule Mining Untuk Analisis Penempatan Tata Letak Buku Di Perpustakaan Menggunakan Algoritma Apriori,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 99, 2019, doi: 10.24014/rmsi.v5i1.7379.

R. D. Purnama, “Implementasi Algoritma Apriori Pada Penyebab Kematian Bayi,” 2021.

M. Fauzy, K. R. Saleh W, and I. Asror, “Penerapan Metode Association Rule Menggunakan Algoritma Apriori Pada Simulasi Prediksi Hujan Wilayah Kota Bandung,” J. Ilm. Teknol. Infomasi Terap., vol. 2, no. 3, 2016, doi: 10.33197/jitter.vol2.iss3.2016.111.

A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.

V. N. Latifah, M. T. Furqon, and N. Santoso, “Implementasi Algoritme Modified-Apriori Untuk Menentukan Pola,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3829–3834, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

Downloads

Published

2024-01-07

How to Cite

Nurmalasari, E. ., Aryanti, U., & Rachman, T. T. . (2024). Penerapan Data Mining Algoritma Apriori untuk Menemukan Pola Hubungan Status Gizi Balita. INTERNAL (Information System Journal), 6(2), 156–166. Retrieved from https://jurnal.masoemuniversity.ac.id/index.php/internal/article/view/885

Issue

Section

Articles