Analisa Clustering untuk Mengelompokan Data Penayangan Film Bioskop Menggunakan Algoritma K-Means

Authors

  • Moh Nurdayat Dayat STIMIK IKMI Cirebon
  • Nana Suarna STMIK IKMI Cirebon
  • Yudhistira Arie Wijaya STMIK IKMI Cirebon

Keywords:

Clustering, Davies Bouldin Index, K-Means

Abstract

The purpose of this study is one of the analyzes to obtain film screening data, the approach used in this study is the K-means algorithm using the parameter measure type Numerical Measure with Numerical Measure Euclidean Distance to get the best Davies Bouldin Index (DBI), with the intention of getting helps grouping datasets of film screenings at the Ramayana Cirebon XXI Cinema. Results from the evaluation of the Davies Bouldin Index (DBI) obtained is (K-2) with a Davies Bouldin Index (DBI) value of 0.864, because the value obtained is the smaller the Davies Bouldin Index (DBI) value, it shows the optimum performance of the resulting cluster.

References

H. Pandiangan, “Penerapan Data Mining Dalam Clustering Produksi Daging Sapi Di Indonesia Menggunakan Algoritma K-Means,” J. Comput. Networks, Archit. High Perform. Comput., vol. 1, no. 2, pp. 37–44, 2019, [Online]. Available: https://doi.org/10.47709/cnapc.v1i2.239

H. Pandiangan, “Penerapan Data Mining Dalam Clustering Produksi Daging Sapi Di Indonesia Menggunakan Algoritma K-Means,” J. Comput. Networks, Archit. High Perform. Comput., vol. 1, no. 2, pp. 37–44, 2019, doi: 10.47709/cnapc.v1i2.239.

C. L. Clayman, S. M. Srinivasan, R. S. Sangwan, C. L. Clayman, S. M. Srinivasan, and R. S. Sangwan, “ScienceDirect ScienceDirect K-means Clustering and Principal Components Analysis of Microarray Data L1000 Components Landmark Genes K-means Clustering and of Principal Analysis of Microarray Data of L1000 Landmark Genes,” Procedia Comput. Sci., vol. 168, no. 2019, pp. 97–104, 2020, doi: 10.1016/j.procs.2020.02.265.

Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, “Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities,” TEM J., vol. 10, no. 3, pp. 1099–1103, 2021, doi: 10.18421/TEM103-13.

https://docs.rapidminer.com/10.0/studio/operators/modeling/segmentation/k_means.html”.

I. P. Mulyadi, “Jurnal Informatika Ekonomi Bisnis Klasterisasi Menggunakan Metode Algoritma K-Means dalam Meningkatkan Penjualan Tupperware,” vol. 4, pp. 5–9, 2022, doi: 10.37034/infeb.v4i4.164.

A. Nofiar, S. Defit, and Sumijan, “Penentuan Mutu Kelapa Sawit Menggunakan Metode K-Means Clustering,” J. KomtekInfo, vol. 5, no. 3, pp. 1–9, 2019, doi: 10.35134/komtekinfo.v5i3.26.

J. Santos-Pereira, L. Gruenwald, and J. Bernardino, “Top data mining tools for the healthcare industry,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 4968–4982, 2022, doi: 10.1016/j.jksuci.2021.06.002.

M. S. H. Ardani et al., “A new approach to signal filtering method using K-means clustering and distance-based Kalman filtering,” Sens. Bio-Sensing Res., vol. 38, no. July, p. 100539, 2022, doi: 10.1016/j.sbsr.2022.100539.

I. Hadi, L. W. Santoso, and A. N. Tjondrowiguno, “Sistem Rekomendasi Film menggunakan User-based Collaborative Filtering dan K-modes Clustering,” J. Infra, vol. 3, no. 1, pp. 18–21, 2020.

H. Syahputra, “Clustering Tingkat Penjualan Menu (Food and Beverage) Menggunakan Algoritma K-Means,” J. KomtekInfo, vol. 9, pp. 29–33, 2022, doi: 10.35134/komtekinfo.v9i1.274.

Downloads

Published

2023-07-31

How to Cite

Dayat, M. N., Suarna, N. ., & Wijaya, Y. A. . (2023). Analisa Clustering untuk Mengelompokan Data Penayangan Film Bioskop Menggunakan Algoritma K-Means. INTERNAL (Information System Journal), 6(1), 68–78. Retrieved from https://jurnal.masoemuniversity.ac.id/index.php/internal/article/view/686

Issue

Section

Articles

Most read articles by the same author(s)